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Colocalization Structures and Eigenvalue Spectra for Color
Image Comparison

Benjamin Berger · Franz-Erich Wolter · Alexander Vais

Abstract Eigenvalue spectra of the Laplace-Beltrami

operator have successfully been employed as fingerprints

for shape and image comparison. Especially notable in

this context is the work of Peinecke on Laplace spec-

trum fingerprinting for image data. Recently, new re-

search on greyscale images by Berger et al. introduces
the idea of attributing individual eigenfunctions to im-
age parts and describes a mechanism for controlling
their localization. These parts are separated by suffi-

ciently strong variations of grey value, giving the origi-

nally global fingerprint a semi-local character. This pa-

per provides an approach to extend this idea to color

images, so that not only gradients of brightness but
also gradients of hue or chroma lead to localization of
eigenfunctions. This is accomplished by generalizing the
eigenfunctions to R

2-valued functions and mapping the

colors to symmetric 2×2-matrices. The resulting matrix

field is then used to modify the Laplacian. Finally, we
present a distance function for comparing eigenvalue-

based fingerprints that makes use of eigenfunction colo-

calization information.

Keywords Laplace · eigenvalue · fingerprint · image

retrieval · image comparison · color images

1 Motivation

Comparing data for similarity using some distance mea-

sure is an important part of many algorithms for e.g.
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classification, data retrieval, result ranking and detec-

tion of near-duplicates. Comparing shape and image

data for similarity is basic and universal in geometric

modelling and computer graphics. This also includes

the important practical area of shape precision control

in manufacturing in CAD and CAE where one uses
very precise and computationally expensive methods
for comparing given pairs of surfaces directly wrt. how
much they deviate from being geometrically congruent,

cf. [2].

However two images or shapes may be compared in-

directly by extracting feature descriptors or fingerprints
and comparing these.

In the area of shape processing, algorithms based on

the eigendecomposition of the Laplace-Beltrami have
met with success. For image data, relatively little re-
search has been conducted in this direction.

In [1] a fingerprinting scheme for grey scale images

was presented that uses eigenvalue spectra of modified
Laplace operators. One contribution of this publica-
tion is to extend that approach to color images, so that
also differences of hue and saturation have the effect of

causing localization of eigenfunctions.

The other contribution of this publication addresses
for the fist time the question of how to exploit colocal-

ization information as part of the fingerprint for dis-

tance computations. One reason why this is beneficial

is that without this information, a fingerprint distance

comparison function would not be able to know if two

eigenvalues are associated with the same or a different

region of the image.
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2 Background

2.1 Eigenvalue fingerprints for shapes

A specific global feature descriptor for shape data is in-

troduced with a detailed description of computational
methods in [6,7]. For an earlier sketchy description of
those methods see [9]. The descriptor, called Shape-

DNA, is a prefix of the eigenvalue spectrum of the

Laplace-Beltrami operator on the shape. A source wrt.

the apparently earliest research on applying Rieman-

nian Laplace spectra as global feature descriptors for

shape and image cognition appears to be [10] reporting

onWelfenlab research (1997-2001) in this area including

e.g. a diploma thesis of Peinecke (March, 2001) using

Laplace Beltrami spectra for grey value image retrieval

applied on collections of images of faces.

2.2 Transfer of the method to grey value images

In [1] a way is presented to modify the operator so that

both light and dark regions are equally represented in

the spectrum. This is accomplished by using the oper-

ator

∆bf := −(e−2bf div e2bf grad) (1)

instead of the negative Laplacian, where f is the image

grey value function and b ∈ R is a parameter controlling

the strength of the localization effect. (The operator

∆bf is called Of in [1].)

2.3 Softened boundary conditions

However, at the edges depicted in the image, where the

gradient of f does not vanish, the operator acts differ-

ently. As explained in more detail in [1], it turns out
that the edge region acts similar to a Neumann bound-

ary towards the side of the edge where bf is greater,
and similar to a Dirichlet boundary condition towards

the side where bf is smaller.

For an input image showing regions with clearly de-

fined edges, these softened boundary conditions dissect

the image plane into several subregions. On each region,

the localized eigenfunctions can be approximated with-

out consideration of the other regions by solving the
eigenvalue problem on the region with the appropri-
ate boundary conditions, because the global eigenvalue

problem is only weakly coupled at the region edges.

This does not hold if the edge is too blurred, |b| is too

small, the eigenvalue is too large or the eigenfunction is

delocalized. But for the right choice of b, most eigenval-

ues are associated with one image region and are close
to an eigenvalue of that region seen in isolation. Hence

the spectrum is approximately the union of the spec-

tra of the individual shapes, giving it the character of
a collection of local feature descriptors and preventing
it from being a purely global feature descriptor.

2.4 Localization densities

To quantify localization of eigenfunctions on different

image regions, [1] introduces the concept of localization

densities. Localization densities are functions L(v) :

Ω → [0,∞] computed from an eigenfunction v so that

L(v)(p) captures the intuitive notion of “how much is
v present at the point p”. For some localization density

function L, the expression

ColocL(vi, vj) :=
∫

Ω
L(vi)(p)L(vj)(p) dp

√

∫

Ω
(L(vi)(p))2 dp ·

∫

Ω
(L(vj)(p))2 dp

(2)

is called the colocalization of the eigenfunctions vi and

vj . The pairwise colocalizations of eigenfunctions can

be used as additional fingerprint information together
with the spectrum and allow to reconstruct which eigen-

values belong to the same region. This information is
exploited by the distance measure described in section
4.

In [1], several localization density functions are pro-

posed. The time-averaged energy localization is a com-
bination of the kinetic (first term) and potential (second
term) energy localization densities and works best for

measuring localization. It can be defined as

E(v) = λv · e
2bf · v · v +

2
∑

k=1

e2bf ·
∂v

∂xk
·
∂v

∂xk
(3)

where λv is the eigenvalue belonging to the eigenfunc-

tion v.

3 Generalization for color images

Now we come to the contribution of this paper. The

idea for treating higher dimensional data (like colors)

with the Laplacian eigenvalues approach is to gener-

alize the eigenfunctions from real-valued functions to

m-dimensional vector-valued functions. Because the m-
dimensional vectors have no geometric significance as

directions in Ω, we will sometimes refer to them as

lists to disambiguate them from geometric vectors. In

the physical interpretation of the vibrating membrane,

the vector valued functions describe the displacement

of a membrane embedded in (m+2) dimensional space

which can move in m independent transversal direc-
tions.
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3.1 Vector-valued eigenfunctions

The operators whose eigenvalues we want to determine

are operators acting on a space of sufficiently smooth

functions Ω → R
m, but should behave in a similar way

to the operators ∆bf acting on scalar-valued eigenfunc-
tions. Hence we need to generalize the definition.

The original operator for real-valued functions,

∆bf := −e−2bf div e2bf grad,

is composed of five parts. We will now look at these
parts and think about how they might be generalized

to operators acting on vector-valued functions. From

right to left, the parts are:

1. The gradient operator. It can be generalized to lists

by letting it act element-wise, so that the result of

applying grad to a function valued in lists of scalars

leads to a function valued in lists of 2-vectors.
2. A pointwise multiplication operator that multiplies

each gradient vector by a positive number calculated

from the image grey value. In the physical interpre-

tation, this factor corresponds to the tension of the

membrane. It can be generalized to lists of gradient

vectors by making it an operator that multiplies the

list of gradient vectors at each point by a positive

definite symmetricm×mmatrixM calculated from

the image color at that point. Form = 2, the matrix
multiplication looks like this:

M(p)

(

g1(p)

g2(p)

)

=

(

M11(p)g1(p) +M12(p)g2(p)
M21(p)g1(p) +M22(p)g2(p)

)

,

where the gi themselves are R2-valued because they

are gradient vectors, but they are treated similar to

scalars in an ordinary matrix multiplication here.

A proposal for how to define this matrix field M is

presented in subsection 3.3.
3. The divergence operator. Like the gradient operator,

it is generalized to functions valued in lists of vectors
by letting it act on each list index independently.

4. A pointwise multiplication operator that is the in-

verse of the operator from step 2. In the physical
interpretation, this factor corresponds to the inverse
mass density of the membrane, which we have, fol-
lowing [1], set equal to the tension (disregarding

physical units).
5. Multiplication by −1. Its generalization to lists is

trivial.

Thus if the generalized operator is applied to a list-

valued function v : Ω → R
m, the corresponding gener-

alized eigenvalue problem is given by

Av = λMv

where

Ajl = −

2
∑

k=1

∂

∂xk
Mjl

∂

∂xk
= divMjl grad

and M is a m×m matrix field derived from the local

image color.

3.2 Generalized energy localization density

The appropriately generalised form for the kinetic en-

ergy localization density of a list-valued eigenfunction

v is (compare equation 3)

K(v)(p) =

m
∑

i=1

m
∑

j=1

M(p)ijv(p)iv(p)j (4)

and for the potential energy localization density

P(v)(p) =

m
∑

i=1

m
∑

j=1

2
∑

k=1

M(p)ij
∂v(p)i
∂xk

∂v(p)j
∂xk

. (5)

Based on this, the time-averaged energy localization
density is then again defined as

E(v) = λv · K(v) + P(v). (6)

3.3 From colors to 2× 2 matrices

Just like colors, symmetric positive definite 2× 2 ma-

trices have three degrees of freedom. These degrees of
freedom can be enumerated as follows:

– Value of the determinant. This measures the overall
“size” or “intensity” of the matrix.

– Difference of the two eigenvalues. This measures the
deviation of the matrix from a multiple of the unit
matrix.

– Direction of the eigenvector belonging to the largest
eigenvalue (called “largest eigenvector” in the fol-
lowing). This is only applicable if the matrix is not
a multiple of the unit matrix, i.e. the eigenvalues are

not degenerate. The direction of the largest eigen-

vector is only defined modulo 180◦, because the ori-

entation of the eigenvector is undetermined.

For colors, represented in a HCV(Hue-Chroma-Value)-

like color space, the degrees of freedom are:

– Value, or brightness of the color.

– Chroma. This measures the deviation of the color

from a shade of grey.

– Hue angle. For shades of grey, the hue angle is un-

defined. Otherwise, it is defined modulo 360◦.
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In this paper, we use a HCV Color space defined

by the following transformation from RGB color space.
Let R,G,B ∈ [0; 1] the the three color components in

RGB color space. Then we define

– Value as R+G+B
3

.
– Chroma as the length of the vector

z :=

(

1

0

)

R+

(

− 1
2

√

3
4

)

G+

(

− 1
2

−
√

3
4

)

B.

– Hue angle as the angle included by the vector z and
fixed direction, for example the x-axis.

Thus we are essentially transitioning to cylindrical co-

ordinates where the cylinder axis is the grey-value main
diagonal of the RGB cube. We adopt this simple trans-
formation to cylidrical coordinates here, but in principle

the following would also work with a more complicated

RGB-to-HCV color space transformation. The vector z

is (up to a scaling factor) the projection of the RGB-

color onto a plane perpendicular to that main diagonal,

so that the whole cube is projected onto a hexagon on

this plane.

Let (ϕ,C, V ) be the triple comprising hue angle,

chroma and value of a color. Then to this color cor-

responds the positive definite symmetric 2× 2 matrix

with the following properties: The largest eigenvalue is

e2bV · eaS while the other eigenvalue is e2bV · e−aS , for
some new constant a ∈ R

+. This ensures that the de-

terminant is e4bV , depending monotonically on V , and

that the difference of the eigenvalues corresponds mono-

tonically to chroma/saturation and is zero for C = 0.

The angle of the largest eigenvector is ϕ
2
. This is irrele-

vant if C = 0, because the matrix will be a multiple of

the unit matrix then anyway.

For monochrome images (f := fR = fG = fB), the

spectrum will then look like the spectrum of the oper-

ator ∆bf from [1], only that each eigenvalue is dupli-

cated. This happens because all the matrices are diag-

onal matrices

(

e2bV 0

0 e2bV

)

which means that the op-

erator can be diagonalized separately for each vector

component, leading to two identical eigenvalue prob-

lems for the operator ∆bf .

The matrix fieldM can be computed from (ϕ,C, V )

by first constructing the eigenvectors:

w2 :=
(

cos
ϕ

2
, sin

ϕ

2

)T

w1 :=
(

−sin
ϕ

2
, cos

ϕ

2

)T

Fig. 1 Correspondence of colors and symmetric positive
definite 2× 2 matrices. Each matrix belonging to a color
is represented by a colored ellipse that is the image of
a circle under the linear transformation defined by the
matrix. Chroma corresponds to the length ratio of the
principal axes, hue corresponds to the direction of the
axes and value/brightness corresponds to the area.

From each of these vectors, a matrix is derived which

has the vector as its eigenvector for the eigenvalue 1

while the other eigenvalue is 0. This is accomplished by

taking the tensor product of the vector with its own

transpose:

m1 := w1 ⊗ wT
1 =

(

(w1)1(w1)1 (w1)1(w1)2
(w1)2(w1)1 (w1)2(w1)2

)

(7)

m2 := w2 ⊗ wT
2 (8)

Then these two matrices are combined with the appro-

priate coefficients so that the matrix field M results as

specified above:

M := e2bV ·
(

eaCm2 + e−aCm1

)

Figure 1 shows the correspondence of colors to sym-

metric positive definite 2× 2 matrices.The matrices have
been obtained from the colors by applying the above

transformation with a = 0.6 and b = −0.5 ln 10.

3.4 Properties

The operator −(M−1 divM grad) is invariant with re-

spect to global additive changes in brightness, because

these result in a multiplication of M everywhere with

the same factor, but the factor from the M−1 and M

pointwise multiplication operators cancel.

In regions of constant color the operator behaves

similar to the ordinary Laplacian for list-valued func-

tions, regardless of the color. This is because, wherever

the color-dependent matrix field M is constant, the M

pointwise multiplication operator commutes with the
divergence operator and cancels with the M−1 point-

wise multiplication operator, leaving only the (nega-
tive) divergence and gradient operators. If there is a
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uniformly colored shape in the image and eigenfunc-

tions localized on it, the subspectrum of eigenvalues

belonging to localized eigenfunctions on the shape does

not directly depend on the color, but only on the shape

and the softened boundary conditions. However, the

way the color changes into different colors at the bound-

ary of the shape will have an effect on the softened

boundary conditions and thus on the spectrum. Thus
we see that the information contained in the spectrum
of the operator is not so much information about colors

directly, but rather information about color contrasts

at the boundaries between regions.

When M is subject to a pointwise similarity trans-

form by a spatially constant matrix field B, this re-

sults in a similarity transformation of the whole oper-

ator because constant matrix fields commute with the
component-wise div and grad operators. Thus, the fol-
lowing operator equation holds:

(

B−1MB
)−1

divB−1MB grad

=B−1M−1BB−1 divM gradB

=B−1(M−1 divM grad)B.

The resulting similarity transformation of the operator
is also a pointwise similarity transformation (with B)

of the original operator.

This has the consequence that the spectrum is in-
variant with respect to rotations of the hue angle be-
cause those rotations lead to a similarity transformation

of the operator. If the vector representing the hue an-

gle, w1 (and likewise w2, see equations (7) and (8)), is

rotated by an orthonormal matrix B, the matrixm1 (as
well as m2, and as a consequence also their linear com-

bination M) is subject to a similarity transformation
by B:

w′
1 :=Bw1

m′
1 :=w′

1 ⊗ w′T
1

=Bw1 ⊗ wT
1 B

T = Bw1 ⊗ wT
1 B

−1

=Bm1B
−1.

Because this similarity transformation acts on the vec-

tor valued eigenfunctions by a pointwise rotation, one

can easily check that the localization densities of the

eigenfunctions as defined in equations 4 to 6 are also

invariant under hue angle rotation.

3.5 Localization behaviour

We will now look at what happens at edges in the im-

age that are caused by spatial changes of color. How

the eigenfunctions behave at the boundary of a region

of relatively homogeneous color is best explained us-

ing the model of a vibrating membrane or array of

mass points. In this case, the points can vibrate in

two transversal directions. However, inside the homo-

geneous region the vibration of each eigenmode will
have – at least locally – a dominant transversal direc-
tion d because there the operator is locally similar to

the unmodified vector-valued Laplacian, the eigenfunc-
tions of which are vectorial multiples of eigenfunctions
of the standard Laplacian. Furthermore, the dominant
direction at nearby points is similar even if the color

changes because eigenfunctions of the Laplacian avoid

large gradients. Therefore we can approximately treat

the system as if it had only a single transversal direc-

tion d. This reduced problem then has a scalar valued

modification field M ′. If the propagating wave encoun-
ters an edge in the image which is caused by a step in

brightness, M ′ will change too and the wave will be re-
flected. But also if the edge consists of a sudden change

in hue or chroma, M ′ will usually change. Some partic-

ular cases will illustrate this:

– If the dominant direction happens to be along the

largest eigenvector (d = w2) in the interior of the
region, then M ′ = d†M(x)d = e2bV · eaC inside the

region. If the hue changes into the complementary

color outside of the region, the hue angle will be

rotated by 180◦ and the eigenvectors of the matrix

field will be rotated by 90◦, so that – assuming the

same d – the field M ′ outside the region is equal to

e2bV · e−aC , because d now points in the direction
of the smallest eigenvector. Thus M ′ changes by a

factor of e−2aC , which will lead to a Neumann-like
boundary condition.

– If instead the dominant direction is along the small-

est eigenvector w1 inside the region, M ′ changes by

a factor e+2aC , leading to a Dirichlet-like boundary

condition.

– If only chroma changes across the edge, the two

eigenvalues of M change in opposite direction while
the eigenvectors remain the same. This, too, will

lead to a change of M ′ for most possibilities of d:

For some d,M ′ changes in the positive direction and

for some d in the negative direction. So some eigen-

functions will have softened Dirichlet boundary con-

ditions and some will have Neumann-like boundary

conditions.

Therefore, with a region that is bounded by a change

in hue or chroma, we expect to find that some of the
eigenfunctions localized on the region have a Dirichlet-
like boundary condition at the edge and some have a
Neumann-like boundary condition. See figure 2 for ex-

amples.
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4 Colocalization based distance measure

The averaged energy colocalization of two eigenfunc-

tions vi and vj , called ColocE(vi, vj) in [1], is a number

between 0 and 1 that measures how much the localiza-

tion regions of two eigenfunctions overlap, see equation

(2). The pairwise colocalizations of all eigenfunctions

contain information about the structure of the image.
Thus the colocalizations can also be used as a finger-
print, together with the spectrum. By matching both

the eigenvalues and the colocalization structures of two

images, one obtains a better distance function. We shall

call this distance function D.

4.1 Comparing colocalization structures

To compare two eigenfunctions of different images, their
neighbourhoods in the respective colocalization graphs

are compared. The colocalization graph is an edge-weigh-
ted graph where the edge weights are the pairwise colo-
calizations. In order to compare graph neighbourhoods,
for each node/eigenfunction a fingerprint is calculated

that reflects the structure of the graph on different

scales. This fingerprint is based on the heat kernel sig-

nature (HKS, see [8]) for the discrete Laplace-Kirchhoff

operator of the graph. Intuitively, the HKS of a point
describes how that point cools down under the time
evolution of the heat equation if one unit of heat was

concentrated at the point in the beginning. Heat kernel

signatures are usually employed in the continuous set-

ting to obtain feature descriptors for points on a mani-

fold, but the transfer to graphs and feature descriptors

for graph vertices is relatively straightforward and de-
scribed in the following. One basically has to replace the
Laplace-Beltrami operator with the Laplace-Kirchhoff

operator and then work with eigenfunctions defined on

the vertices of the graph (written here with index no-

tation) instead of continuous functions. The Laplace-

Kirchhoff operator [4] for a colocalization graph includ-

ing up to n eigenfunctions is the n×n matrix

Lij =

{

−ColocE(vi, vj) if i 6= j
∑n

k=1,k 6=i ColocE(vi, vk) if i = j.
(9)

Then the HKS belonging to the jth node is a func-

tion HKSw,µ(j) : R+ → R
+; here, w is the family of

normalized eigenvectors of L and µ is the spectrum.

These are used in the calculation of the HKS. Similar

to the formalism for the continuous HKS, the HKS for

the jth node in the graph is then defined to be the jth
component of the solution ψ to the differential equation

system

ψ̇ =− Lψ (10)

with initial values ψ(0)k = δjk, which is the heat equa-

tion on the graph with initial heat distribution con-

centrated at a single node j. Here the Kronecker delta

replaces the Dirac delta from the continuous case. We

will modify this a bit by subtracting ψ(∞)j so that

the HKS goes to zero asymptotically. The solution to

equation 10 is given by

ψ(t) =

n
∑

i=1

(wi)jwie
−µit. (11)

Lastly, the HKS is the jth component of ψ − ψ(∞):

HKSw,µ(j)(t) =

n
∑

i=2

w2
ije

−µit. (12)

The sum starts at 2, because the first eigenvalue of L is

always 0 (and thus contains no information) and would

possibly cause the integral for the L2 distance to di-

verge. Ignoring the first eigenvalue and eigenfunction

is the same as subtracting ψ(∞)j under the assump-

tion that all other eigenvalues are positive, which is the

case if the graph is connected. The HKS of two nodes

from different graphs can now be compared using the

L2-norm of their difference. The needed integral can be
computed exactly from the eigendecomposition of L.

4.2 Goal function

The distance function D we are going to define is com-

puted by finding an optimal matching between n eigen-

pairs from the input I and ñ eigenpairs from the in-

put image Ĩ. A matching M is a n× ñ matrix where

the entry Mi,̃ı is called the association strength of the
ith eigenpair from the first image with the ı̃th eigen-

pair from the second image. The entries of M are num-

bers between 0 and 1 that tell to what degree the two

eigenpairs correspond to each other, in terms of hav-

ing similar eigenvalues and similar surroundings in the

colocalization graph and being colocalized with other

corresponding eigenpairs. The goal function G that is
minimized to find the optimal matching should reward

consistency of the matching in the sense that if eigen-

pairs p and p̃ are strongly associated by the matching,

and also q and q̃ are strongly associated, then the colo-

calization of the eigenfunctions of p and q should be

similar to the colocalization of p̃ and q̃.

Matchings are required to be normalized:

n
∑

i=1

Mi,̃ ≤ 1 and

ñ
∑

ı̃=1

Mı̃,j ≤ 1,

that is no eigenpair is matched with total association

strength greater than 1. The total association strength
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may be less than one or even zero, which indicates an

eigenpair that has no corresponding eigenpair in the

other image.

The goal functionG assigns distance values to match-

ings. The minimum of the goal function is the distance

D(I, Ĩ) of the two input images I and Ĩ. We propose a
goal function which is described in the following. The

definition of the goal function depends on four values
wλ,wHKS,wM,wg ∈ R

+, which determine the weights

of different terms in the goal function. These values

need to be of comparable size to the differences of eigen-

values in the spectra. Therefore, not the original spectra

are used, but the spectrum prefixes are rescaled so that

the average distance of successive eigenvalues is 1:

λi = λ
orig
i ·

n− 1

λ
orig
n − λ

orig
1

.

Let λi be the ith rescaled eigenvalue for the first image,
let µ and w be families of eigenvalues and eigenvectors

of the Laplace-Kirchhoff operator for its colocalization

graph and let Cij be a shorthand for ColocE(vi, vj). Let

λ̃ı̃, µ̃, w̃ and C̃ĩj̃ the corresponding data for the second

input image.

The value G(M) is then a sum over five different

kinds of terms:

1. For each entry Mi,̃ı of the matching matrix, there is

a term

Mi,̃ı · wλ ·
∣

∣

∣
λi − λ̃ı̃

∣

∣

∣

which compares the eigenvalues of the two matched

eigenpairs.

2. For each entry Mi,̃ı of the matching matrix, there is

a term

Mi,̃ı · wHKS · |HKSw,µ(i)−HKSw̃,µ̃(̃ı)|

that compares the surroundings of the nodes in the

colocalization graph.

3. For each entry Mi,̃ı and each entry Mj,̃ (with i 6= j

and ı̃ 6= ̃) there is a term

Mi,̃ı ·Mj,̃ · wM ·
∣

∣

∣
Cij − C̃ı̃̃

∣

∣

∣

that increases the goal function according to the in-

consistency of the two assignments.

4. For each possible j there is a term

wg ·

(

1−

ñ
∑

ı̃=1

Mj,̃ı

)

which rates gaps in the matching from one side: An

eigenvalue λj of the first spectrum where the asso-

ciation strengths with eigenvalues from the second

spectrum do not sum to 1 will increase the goal func-

tion accordingly and proportional to the gap cost

wg ∈ R
+. Matchings where such a term is negative

are not normalized and are excluded from the set of
admissible matchings.

5. For each possible ̃ there is a term

wg ·

(

1−
n
∑

i=1

Mi,̃

)

that rates gaps in the matching from the other side.

For the experiments later in this paper, the choice
wg = 20, wλ = 1, wM = 2 and wHKS = 0.4 was made.

4.3 Approximation of the distance measure

Although the set of all normalized matchings is con-

vex, convex optimization is not applicable because the
Hessian of the goal function, given by

∂2G(M)

∂Miı̃∂Mj̃

= 2wM(1− δij)(1− δı̃̃)
∣

∣

∣
Cij − C̃ı̃̃

∣

∣

∣
, (13)

is a hollow matrix and therefore not positive semidefi-

nite unless all colocalizations are equal. Hence the goal

function is nonconvex and might have multiple different

local minima in the set of normalized matchings.

We chose here to optimize the goal function ap-

proximately by means of the simulated annealing meta-

heuristic [3], but projected gradient descent has also

shown promising results, indicating that local minima

are perhaps not as big a problem as originally thought.

Being a heuristic, the algorithm is not guaranteed to

find the optimal matching but instead generally finds a

different matching M̃ .

We use the name D̃ to denote the resulting distance

function whose value is G(M̃). For example, when com-

paring an image I against itself, D(I, I) is zero with the

optimal matching being the unit matrix, but D̃(I, I) is

usually not zero because the heuristic may not find the

optimal matching. To compensate for the error when

comparing an image I1 to an image I2, we subtract the

maximum of the approximated distances of the images

to themselves. We arrive at a distance function D̃′ de-

fined as

D̃′(I1, I2) :=

max
{

0, D̃(I1, I2)−max
{

D̃(I1, I1), D̃(I2, I2)
}}

that has the desired identity property of being zero

for equal arguments; the other distances are corrected

downward.
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(a) The input
image

(b) K(v9) (c) K(v24)

(d) K(v35) (e) K(v37) (f) K(v43)

Fig. 2 Localization of eigenfunctions in a color image of
uniform brightness.

5 Results

5.1 Localization of eigenfunctions due to hue and

chroma difference

Figure 2 displays kinetic energy localisation densities

for selected eigenfunctions of the described operator

with a = 2.3 and b = −1.5 ln 10. Using the kinetic

energy localization density makes it more visible what
kind of softened boundary conditions occur at the edge.
The input image was constructed so that fR + fG + fC
is constant. The localization effects are therefore caused
by hue (and chroma) differences only. Note that both
kinds of boundary conditions can occur in the same lo-

cation, depending on the locally dominant direction of

the vector valued eigenfunction:

Eigenfunction 9 is localized on the upper half with Neu-

mann-like boundary conditions.

Eigenfunction 24 is localized on the lower half with Neu-

mann boundary conditions towards the image bor-

der and Dirichlet-like boundary conditions towards

the square shape. In our work, the image border

always has Neumann boundary conditions.

Eigenfunction 35 is an example for an eigenfunction

that is not localized.

Eigenfunction 37 is localized on the blue square with

Neumann-like boundary conditions.

Eigenfunction 43 is localized on the blue square with
Dirichlet-like boundary conditions.

The localization effect due to changes in hue and

chroma is influenced in its strength by the a parameter.

Increasing a to increase the effect does unfortunately

not work as well as it does with parameter b for the
brightness-induced localization effect.

Fig. 3 Eigenvalues and localization regions, depending
on the position of a blue square on a red and green back-
ground.

5.2 Representation of shapes in the spectrum

If eigenfunctions are localized on shapes depicted in the

image, the associated eigenvalues should be close to the
eigenvalues of the Laplacian on that shape. For exam-
ple, if the shape is a square, these characteristic eigen-

values are proportional to sums of two square numbers.

Whether we have Neumann or Dirichlet boundary con-

ditions on the square decides if zero is allowed as a

summand or not.

In figure 2 of [1] a plot was shown that visualized
how eigenvalues and associated localization regions de-

pended on a varying input image. The monochrome

image series depicted a square that moves downward

while rotating. Blue line segments, denoting eigenval-

ues that belonged to the square, were at the expected

places (sums of two squares) and stayed mostly horizon-

tal. Red line segments were associated with the lower
half of the background. They were generally rising be-
cause the lower background shrinks as the square moves

downwards and smaller domains have larger Laplacian

eigenvalues. For similar reasons, the green line segments

representing the evolution of eigenvalues of eigenfunc-

tions localized on the upper half of the background were

generally falling.

Now we do a similar experiment with color images.

The image sequence for figure 3 was made using three

primary colors of the same brightness, dividing the back-

ground explicitly into two parts. Here, decoupling that

leads to localized eigenfunctions is caused by hue con-
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Fig. 4 Eigenvalues and localization regions, depending
on the position of a blue square on a red and green back-
ground, computed from the generalized height function
Laplacian. The size of the image rectangle is scaled to π

2.

trast alone and not by brightness contrast. The opera-

tors were generated from the images according to sub-

section 3.3 with parameters a = 2.3 and b = −1.5 ln 10.

One can again see the desired features: Rising red lines,

falling green lines and horizontal blue lines at heights

proportional to sums of two square numbers. This in-

dicates that information about the presence of the blue

square is contained in the spectrum regardless of the po-

sition of the square. Note that this is only visible here

because we had a priori knowledge about the likely lo-

calization regions and colored the graphs accordingly.

To actually make use of this information when com-

paring images, the spectrum needs to be augmented

by pairwise colocalization information, otherwise one

could not tell which eigenvalues belong to the same

subregion. In contrast, we now show a plot for the same

image series as in figure 3, but with the operator being

the Laplace-Beltrami operator on a generalized height

surface as in [4]. One immediately notes that the eigen-

value graphs in figure 4 are less colorful than those in

the other figures, indicating that the eigenfunctions are

less clearly localized in a single image region. The color-

dependent trends of the graphs seen in the other figures

are also absent.

5.3 Image comparison and retrieval

We now compare the image retrieval performance of
the generalized height function Laplacian from [4] and

(a) Euclidean dis-
tance of spectra

(b) Colocalization
based distance D̃

′

Fig. 5 Precision-recall curves for the generalized height
function Laplacian. The first 30 eigenpairs were used for
the distance calculations.

our vector-valued modified Laplacian for color images.

Our test data consists of seven base images and eight

modified versions of each base image. All images have

the same side lengths to ensure that not accidentally

the shapes of the image domains are compared instead

of the image content. There is however no real danger

of that happening here, as the parameters a and b are

large enough and the image area for all images is scaled

to π2 so the deformations of the height surface are sig-

nificant. Also, scaling the images like this causes the

eigenvalue sizes to be on a reasonable scale. We com-

pare each image to each other image using both the L2

distance of their spectra and the distance D̃′.

For a given fingerprinting scheme and distance func-

tions, we use each image as a query image and retrieve

the m most similar images for all possible m. We count

an image as relevant to the query if it is derived from the
same base image as the query image. The ratio of the
numbers of relevant returned results and all returned

results is called precision, while the fraction of relevant

results which are returned is called recall, see e.g. [5].

For a good retrieval algorithm, precision will be high as

long as the result set size m is no larger than the rele-

vant cluster size, and recall will increase with m till it
is close to 1 before the precision starts dropping. Con-

versely, if the retrieval is poor, lots of irrelevant results
are returned (low precision) even as not many relevant
results are found (low recall).

The relationship between precision and recall is plot-

ted so that precision is on the vertical axis and recall is

on the horizontal axis. The curve we actually show here

is the monotonically decreasing hull of the average of

the precision-recall relations for all query images. Thus

a good curve will proceed high in the unit square and

a bad curve will drop early.

Figure 5 shows the curves for the generalized height

function Laplacian. For both distance measures, the re-

trieval quality is quite poor. Using the colocalization

based distance D̃′ does not help here because the ei-
genfunctions are not localized.
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(a) Euclidean dis-
tance of spectra

(b) Colocalization
based distance D̃

′

Fig. 6 Precision-recall curves for modified Laplacian pro-
posed in this Paper. Parameters are a = 2.3 and b =
−1.5 ln 10. The first 30 eigenpairs were used for the dis-
tance calculations.

The curves in figure 6 show the relationship of preci-
sion and recall for the modified Laplacian described in

this paper. When the L2 distance is used, the retrieval

performance is not good either. This is to be expected,

as the L2 distance simply compares the ith eigenvalue

of the first image to the ith eigenvalue of the second

image and thus does not consider the possibility that

two eigenpairs of equal index may have semantically

unrelated localization regions. Using the colocalization

based distance leads to a significantly better perfor-

mance because most eigenfunctions are localized and

this localization is taken into account when comparing

the fingerprints.

6 Conclusion

Our contributions to the discussion can be summarized
as follows:

– We presented a modified Laplacian fingerprinting

scheme that works with color images.

– It produces the same eigenvalues as [1] in the case
of monochrome images, but makes use of color in-

formation if present.
– The eigenfunctions are typically localized on image

regions bounded by color changes, including chroma

and hue changes.

– This localization information is exploited by includ-

ing colocalization degrees for all pairs of eigenfunc-

tions in the fingerprint and using a new distance

measure that finds a matching of eigenvalues and
colocalization structures.

– An experimental study showed that using this dis-

tance measure in conjunction with our fingerprint-

ing scheme gives superior retrieval performance com-

pared to both the usually employed L2 distance
measure and the fingerprinting scheme based on gen-

eralized height functions (from [4]), which to date

was the only Laplacian eigenvalue based fingerprint-

ing algorithm for color images.
– We also presented a singularity free parametriza-

tion of colors by symmetric positive definite 2× 2-

matrices, which might be useful in other areas as

well.

We point out that it is straightforward to apply our

formulas to textured shapes, enabling applications in

the shape processing community. For untextured shape

processing, we see a possible application of our opera-

tors by making the operator modification field M de-
pend not on color but instead on curvature information.

Thus, for example, creases in the shape could be made

to cause localization of eigenfunctions on parts of the

shape which are bounded by such creases.
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